Database of Expert-Coded German PSE Stories
Dataset for: Measuring Implicit Motives With the Picture Story Exercise (PSE): Databases of Expert-Coded German Stories, Pictures, and Updated Picture Norms.
Author(s) / Creator(s)
Schönbrodt, F. D.
Hagemeyer, B.
Brandstätter, V.
Czikmantori, T.
Gröpel, P.
Hennecke, M.
Israel, L. S. F.
Janson, K.
Kemper, N.
Köllner, M.
Kopp, P. M.
Mojzisch, A.
Müller-Hotop, R.
Prüfer, J.
Quirin, M.
Scheidemann, B.
Schiestel, L.
Schulz-Hardt, S.
Sust, L.
Zygar, C.
Schultheiss, O. C.
Abstract / Description
We present two openly accessible databases related to the assessment of implicit motives using Picture Story Exercises (PSEs): (a) A database of 183,415 German sentences, nested in 26,389 stories provided by 4,570 participants, which have been coded by experts using Winter’s coding system for the implicit affiliation/intimacy, achievement, and power motives, and (b) a database of 54 classic and new pictures which have been used as PSE stimuli. Updated picture norms are provided which can be used to select appropriate pictures for PSE applications. Based on an analysis of the relations between raw motive scores, word count, and sentence count, we give recommendations on how to control motive scores for story length, and validate the recommendation with a meta-analysis on gender differences in the implicit affiliation motive that replicates existing findings. We discuss to what extent the guiding principles of the story length correction can be generalized to other content coding systems for narrative material. Several potential applications of the databases are discussed, including (un)supervised machine learning of text content, psychometrics, and better reproducibility of PSE research.
Dataset for: Schönbrodt, F. D., Hagemeyer, B., Brandstätter, V., Czikmantori, T., Gröpel, P., Hennecke, M., Israel, L. S. F., Janson, K. T., Kemper, N., Köllner, M. G., Kopp, P. M., Mojzisch, A., Müller-Hotop, R., Prüfer, J., Quirin, M., Scheidemann, B., Schiestel, L., Schulz-Hardt, S., Sust, L. N. N., Zygar-Hoffmann, C., & Schultheiss, O. C. (2020). Measuring Implicit Motives with the Picture Story Exercise (PSE): Databases of Expert-Coded German Stories, Pictures, and Updated Picture Norms. Journal of Personality Assessment, 1–14. https://doi.org/10.1080/00223891.2020.1726936
Keyword(s)
picture story exercise implicit motives database pictures manual coding machine learningPersistent Identifier
Date of first publication
2020-01-27
Temporal coverage
2010 to 2019
Publisher
PsychArchives
Is referenced by
Citation
Schönbrodt, F. D., Hagemeyer, B., Brandstätter, V., Czikmantori, T., Gröpel, P., Hennecke, M., Israel, L. S. F., Janson, K., Kemper, N., Köllner, M., Kopp, P. M., Mojzisch, A., Müller-Hotop, R., Prüfer, J., Quirin, M., Scheidemann, B., Schiestel, L., Schulz-Hardt, S., Sust, L., … Schultheiss, O. C. (2020). Database of Expert-Coded German PSE Stories. PsychArchives. https://doi.org/10.23668/PSYCHARCHIVES.2738
-
dataset_description.jsonUnknown - 5.9KBMD5: 03e7320793b223c2ae0c62cba1e12e89
-
MD5.txtText - 0.06KBMD5: c198dfd5f4c56cb30ab8af4c53612785
-
PSE_codebook.xlsxMicrosoft Excel XML - 6.28KBMD5: 8dffd1048681aa13f3c5f0579ed5860f
-
PSE_1.0_redacted_data.tsvUnknown - 62.2MBMD5: 9acc8e74a45e2651a96ceb371b227ade
-
There are no other versions of this object.
-
Author(s) / Creator(s)Schönbrodt, F. D.
-
Author(s) / Creator(s)Hagemeyer, B.
-
Author(s) / Creator(s)Brandstätter, V.
-
Author(s) / Creator(s)Czikmantori, T.
-
Author(s) / Creator(s)Gröpel, P.
-
Author(s) / Creator(s)Hennecke, M.
-
Author(s) / Creator(s)Israel, L. S. F.
-
Author(s) / Creator(s)Janson, K.
-
Author(s) / Creator(s)Kemper, N.
-
Author(s) / Creator(s)Köllner, M.
-
Author(s) / Creator(s)Kopp, P. M.
-
Author(s) / Creator(s)Mojzisch, A.
-
Author(s) / Creator(s)Müller-Hotop, R.
-
Author(s) / Creator(s)Prüfer, J.
-
Author(s) / Creator(s)Quirin, M.
-
Author(s) / Creator(s)Scheidemann, B.
-
Author(s) / Creator(s)Schiestel, L.
-
Author(s) / Creator(s)Schulz-Hardt, S.
-
Author(s) / Creator(s)Sust, L.
-
Author(s) / Creator(s)Zygar, C.
-
Author(s) / Creator(s)Schultheiss, O. C.
-
Temporal coverage2010:2019
-
PsychArchives acquisition timestamp2020-01-28T14:36:04Z
-
Made available on2020-01-28T14:36:04Z
-
Date of first publication2020-01-27
-
Abstract / DescriptionWe present two openly accessible databases related to the assessment of implicit motives using Picture Story Exercises (PSEs): (a) A database of 183,415 German sentences, nested in 26,389 stories provided by 4,570 participants, which have been coded by experts using Winter’s coding system for the implicit affiliation/intimacy, achievement, and power motives, and (b) a database of 54 classic and new pictures which have been used as PSE stimuli. Updated picture norms are provided which can be used to select appropriate pictures for PSE applications. Based on an analysis of the relations between raw motive scores, word count, and sentence count, we give recommendations on how to control motive scores for story length, and validate the recommendation with a meta-analysis on gender differences in the implicit affiliation motive that replicates existing findings. We discuss to what extent the guiding principles of the story length correction can be generalized to other content coding systems for narrative material. Several potential applications of the databases are discussed, including (un)supervised machine learning of text content, psychometrics, and better reproducibility of PSE research.en
-
Abstract / DescriptionDataset for: Schönbrodt, F. D., Hagemeyer, B., Brandstätter, V., Czikmantori, T., Gröpel, P., Hennecke, M., Israel, L. S. F., Janson, K. T., Kemper, N., Köllner, M. G., Kopp, P. M., Mojzisch, A., Müller-Hotop, R., Prüfer, J., Quirin, M., Scheidemann, B., Schiestel, L., Schulz-Hardt, S., Sust, L. N. N., Zygar-Hoffmann, C., & Schultheiss, O. C. (2020). Measuring Implicit Motives with the Picture Story Exercise (PSE): Databases of Expert-Coded German Stories, Pictures, and Updated Picture Norms. Journal of Personality Assessment, 1–14. https://doi.org/10.1080/00223891.2020.1726936en
-
Review statuspeerRevieweden
-
SponsorshipParts of this research were funded by the German Research Foundation (SCHO 1334/1-1, Felix Schönbrodt; HA 6884/2-1, Birk Hagemeyer; SCHU 1210/3-1, Oliver Schultheiss; 254142454 / GRK 2070, Stefan Schulz-Hardt and Andreas Mojzisch) and the Swiss National Science Foundation (SNSF 100019\_156516, Marie Hennecke and Veronika Brandstätter).en
-
CitationSchönbrodt, F. D., Hagemeyer, B., Brandstätter, V., Czikmantori, T., Gröpel, P., Hennecke, M., Israel, L. S. F., Janson, K., Kemper, N., Köllner, M., Kopp, P. M., Mojzisch, A., Müller-Hotop, R., Prüfer, J., Quirin, M., Scheidemann, B., Schiestel, L., Schulz-Hardt, S., Sust, L., … Schultheiss, O. C. (2020). Database of Expert-Coded German PSE Stories. PsychArchives. https://doi.org/10.23668/PSYCHARCHIVES.2738en
-
Persistent Identifierhttps://hdl.handle.net/20.500.12034/2352
-
Persistent Identifierhttps://doi.org/10.23668/psycharchives.2738
-
Language of contentdeu
-
PublisherPsychArchivesen
-
Is referenced byhttps://doi.org/10.1080/00223891.2020.1726936
-
Is related tohttps://doi.org/10.1080/00223891.2020.1726936
-
Keyword(s)picture story exerciseen
-
Keyword(s)implicit motivesen
-
Keyword(s)databaseen
-
Keyword(s)picturesen
-
Keyword(s)manual codingen
-
Keyword(s)machine learningen
-
Dewey Decimal Classification number(s)150
-
TitleDatabase of Expert-Coded German PSE Storiesen
-
Alternative titleDataset for: Measuring Implicit Motives With the Picture Story Exercise (PSE): Databases of Expert-Coded German Stories, Pictures, and Updated Picture Norms.en
-
DRO typeresearchDataen
-
Leibniz subject classificationPsychologieger