Research Data

Database of Expert-Coded German PSE Stories

Dataset for: Measuring Implicit Motives With the Picture Story Exercise (PSE): Databases of Expert-Coded German Stories, Pictures, and Updated Picture Norms.

Author(s) / Creator(s)

Schönbrodt, F. D.
Hagemeyer, B.
Brandstätter, V.
Czikmantori, T.
Gröpel, P.
Hennecke, M.
Israel, L. S. F.
Janson, K.
Kemper, N.
Köllner, M.
Kopp, P. M.
Mojzisch, A.
Müller-Hotop, R.
Prüfer, J.
Quirin, M.
Scheidemann, B.
Schiestel, L.
Schulz-Hardt, S.
Sust, L.
Zygar, C.
Schultheiss, O. C.

Abstract / Description

We present two openly accessible databases related to the assessment of implicit motives using Picture Story Exercises (PSEs): (a) A database of 183,415 German sentences, nested in 26,389 stories provided by 4,570 participants, which have been coded by experts using Winter’s coding system for the implicit affiliation/intimacy, achievement, and power motives, and (b) a database of 54 classic and new pictures which have been used as PSE stimuli. Updated picture norms are provided which can be used to select appropriate pictures for PSE applications. Based on an analysis of the relations between raw motive scores, word count, and sentence count, we give recommendations on how to control motive scores for story length, and validate the recommendation with a meta-analysis on gender differences in the implicit affiliation motive that replicates existing findings. We discuss to what extent the guiding principles of the story length correction can be generalized to other content coding systems for narrative material. Several potential applications of the databases are discussed, including (un)supervised machine learning of text content, psychometrics, and better reproducibility of PSE research.
Dataset for: Schönbrodt, F. D., Hagemeyer, B., Brandstätter, V., Czikmantori, T., Gröpel, P., Hennecke, M., Israel, L. S. F., Janson, K. T., Kemper, N., Köllner, M. G., Kopp, P. M., Mojzisch, A., Müller-Hotop, R., Prüfer, J., Quirin, M., Scheidemann, B., Schiestel, L., Schulz-Hardt, S., Sust, L. N. N., Zygar-Hoffmann, C., & Schultheiss, O. C. (2020). Measuring Implicit Motives with the Picture Story Exercise (PSE): Databases of Expert-Coded German Stories, Pictures, and Updated Picture Norms. Journal of Personality Assessment, 1–14. https://doi.org/10.1080/00223891.2020.1726936

Keyword(s)

picture story exercise implicit motives database pictures manual coding machine learning

Persistent Identifier

Date of first publication

2020-01-27

Temporal coverage

2010 to 2019

Publisher

PsychArchives

Is referenced by

Citation

Schönbrodt, F. D., Hagemeyer, B., Brandstätter, V., Czikmantori, T., Gröpel, P., Hennecke, M., Israel, L. S. F., Janson, K., Kemper, N., Köllner, M., Kopp, P. M., Mojzisch, A., Müller-Hotop, R., Prüfer, J., Quirin, M., Scheidemann, B., Schiestel, L., Schulz-Hardt, S., Sust, L., … Schultheiss, O. C. (2020). Database of Expert-Coded German PSE Stories. PsychArchives. https://doi.org/10.23668/PSYCHARCHIVES.2738
  • Author(s) / Creator(s)
    Schönbrodt, F. D.
  • Author(s) / Creator(s)
    Hagemeyer, B.
  • Author(s) / Creator(s)
    Brandstätter, V.
  • Author(s) / Creator(s)
    Czikmantori, T.
  • Author(s) / Creator(s)
    Gröpel, P.
  • Author(s) / Creator(s)
    Hennecke, M.
  • Author(s) / Creator(s)
    Israel, L. S. F.
  • Author(s) / Creator(s)
    Janson, K.
  • Author(s) / Creator(s)
    Kemper, N.
  • Author(s) / Creator(s)
    Köllner, M.
  • Author(s) / Creator(s)
    Kopp, P. M.
  • Author(s) / Creator(s)
    Mojzisch, A.
  • Author(s) / Creator(s)
    Müller-Hotop, R.
  • Author(s) / Creator(s)
    Prüfer, J.
  • Author(s) / Creator(s)
    Quirin, M.
  • Author(s) / Creator(s)
    Scheidemann, B.
  • Author(s) / Creator(s)
    Schiestel, L.
  • Author(s) / Creator(s)
    Schulz-Hardt, S.
  • Author(s) / Creator(s)
    Sust, L.
  • Author(s) / Creator(s)
    Zygar, C.
  • Author(s) / Creator(s)
    Schultheiss, O. C.
  • Temporal coverage
    2010:2019
  • PsychArchives acquisition timestamp
    2020-01-28T14:36:04Z
  • Made available on
    2020-01-28T14:36:04Z
  • Date of first publication
    2020-01-27
  • Abstract / Description
    We present two openly accessible databases related to the assessment of implicit motives using Picture Story Exercises (PSEs): (a) A database of 183,415 German sentences, nested in 26,389 stories provided by 4,570 participants, which have been coded by experts using Winter’s coding system for the implicit affiliation/intimacy, achievement, and power motives, and (b) a database of 54 classic and new pictures which have been used as PSE stimuli. Updated picture norms are provided which can be used to select appropriate pictures for PSE applications. Based on an analysis of the relations between raw motive scores, word count, and sentence count, we give recommendations on how to control motive scores for story length, and validate the recommendation with a meta-analysis on gender differences in the implicit affiliation motive that replicates existing findings. We discuss to what extent the guiding principles of the story length correction can be generalized to other content coding systems for narrative material. Several potential applications of the databases are discussed, including (un)supervised machine learning of text content, psychometrics, and better reproducibility of PSE research.
    en
  • Abstract / Description
    Dataset for: Schönbrodt, F. D., Hagemeyer, B., Brandstätter, V., Czikmantori, T., Gröpel, P., Hennecke, M., Israel, L. S. F., Janson, K. T., Kemper, N., Köllner, M. G., Kopp, P. M., Mojzisch, A., Müller-Hotop, R., Prüfer, J., Quirin, M., Scheidemann, B., Schiestel, L., Schulz-Hardt, S., Sust, L. N. N., Zygar-Hoffmann, C., & Schultheiss, O. C. (2020). Measuring Implicit Motives with the Picture Story Exercise (PSE): Databases of Expert-Coded German Stories, Pictures, and Updated Picture Norms. Journal of Personality Assessment, 1–14. https://doi.org/10.1080/00223891.2020.1726936
    en
  • Review status
    peerReviewed
    en
  • Sponsorship
    Parts of this research were funded by the German Research Foundation (SCHO 1334/1-1, Felix Schönbrodt; HA 6884/2-1, Birk Hagemeyer; SCHU 1210/3-1, Oliver Schultheiss; 254142454 / GRK 2070, Stefan Schulz-Hardt and Andreas Mojzisch) and the Swiss National Science Foundation (SNSF 100019\_156516, Marie Hennecke and Veronika Brandstätter).
    en
  • Citation
    Schönbrodt, F. D., Hagemeyer, B., Brandstätter, V., Czikmantori, T., Gröpel, P., Hennecke, M., Israel, L. S. F., Janson, K., Kemper, N., Köllner, M., Kopp, P. M., Mojzisch, A., Müller-Hotop, R., Prüfer, J., Quirin, M., Scheidemann, B., Schiestel, L., Schulz-Hardt, S., Sust, L., … Schultheiss, O. C. (2020). Database of Expert-Coded German PSE Stories. PsychArchives. https://doi.org/10.23668/PSYCHARCHIVES.2738
    en
  • Persistent Identifier
    https://hdl.handle.net/20.500.12034/2352
  • Persistent Identifier
    https://doi.org/10.23668/psycharchives.2738
  • Language of content
    deu
  • Publisher
    PsychArchives
    en
  • Is referenced by
    https://doi.org/10.1080/00223891.2020.1726936
  • Is related to
    https://doi.org/10.1080/00223891.2020.1726936
  • Keyword(s)
    picture story exercise
    en
  • Keyword(s)
    implicit motives
    en
  • Keyword(s)
    database
    en
  • Keyword(s)
    pictures
    en
  • Keyword(s)
    manual coding
    en
  • Keyword(s)
    machine learning
    en
  • Dewey Decimal Classification number(s)
    150
  • Title
    Database of Expert-Coded German PSE Stories
    en
  • Alternative title
    Dataset for: Measuring Implicit Motives With the Picture Story Exercise (PSE): Databases of Expert-Coded German Stories, Pictures, and Updated Picture Norms.
    en
  • DRO type
    researchData
    en
  • Leibniz subject classification
    Psychologie
    ger